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We study the system of two localized anyons in the lowest Landau level and show how anyonic signatures
extrapolating between antibunching tendencies of fermions and bunching tendencies of bosons become mani-
fest in the two-particle correlations. Toward probing these correlations, we discuss the influence of a saddle
potential on these anyons; we exploit analogies from quantum optics to analyze the time evolution of such a
system. We show that the saddle potential can act as a beam-splitter akin to those in bosonic and fermionic
systems, and can provide a means of measuring the derived anyonic signatures.
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The quantum statistics of bosons and fermions plays a
fundamental role over a vast range of length scales and di-
verse physics such as the spatial distribution and energetics
of electrons in atoms, certain constraints on scattering cross
sections in nuclear physics, the existence of superfluids and
the stability of neutron stars. Statistical signatures key to
these phenomena have been explored over the past decades
via analyses of two-particle correlations including in seminal
studies of bosonic bunching properties by Hanbury Brown
and Twiss1 and Hong et al.2 The latter, which also has its
fermionic counterpart,3–5 performs time-resolved coinci-
dence measurements of pairs of photons incident on a beam
splitter from two uncorrelated sources collected at two detec-
tors. While these analyses have established the allowed
quantum nature of particles in three dimensions, the past
decade has drawn attention to the study of two-dimensional
“anyons,” quasiparticles which obey fractional statistics in-
terpolating between those of fermions and bosons.6,7 Given
the current rapid experimental progress in two-dimensional
systems and the keen quest for topologically ordered states
which can be ascertained by the detection of anyons, a fun-
damental understanding of these entities analogous to that of
fermions and bosons is much called for.

Here, we explore the �anti�bunching properties of a sys-
tem of two noninteracting localized Abelian anyons by ana-
lyzing the behavior of specific observables and propose a
means of realizing a beam splitter wherein these anyonic
properties become manifest. The common wave function for
these anyons by definition picks up a phase of ei�� �e−i���
upon a anticlockwise �clockwise� exchange of the particles.6

The parameter � lies in the range 0���1; �=0 and 1
correspond to bosons and fermions, respectively. Of direct
relevance to bulk quasihole excitations in the quantum Hall
system6,8–10—a paradigm for anyonic statistics—we study a
two-dimensional system of two anyons in a magnetic field
projected onto the lowest Landau level �LLL�.�In particular,
for Laughlin states,9 quasiholes have fractional charge
q=−e /m and statistics �=1 /m, where m is an odd
integer.11,12� We find that while anyonic signatures in the
LLL are subtle, they clearly extrapolate between their
bosonic and fermionic counterparts. We show that the pres-
ence of a saddle potential offers a means for LLL anyons to
approach one another along two incoming limbs and then
propagate away along two outgoing limbs, akin to the pho-

tonic beam-splitter settings, and that analogous coincidence
measurements made along the limbs can reflect our predicted
anyonic signatures.

The Hamiltonian for two anyons in a perpendicular mag-

netic field B=Bk̂ has the decoupled form
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in terms of center of mass �c.o.m.� and relative
variables. Here the anyons are assumed to have mass �
�which is immaterial when states are projected to the LLL�
and charge q. We have chosen the symmetric gauge

A�= �B /2��−y�î+x�ĵ� , �=1,2 for each particle. The c.o.m.
coordinate and momentum are given by Rc= �r1+r2� /2 and
P=p1+p2 while the relative coordinate and momentum are
given by r=r1−r2 and p= �p1−p2� /2. In both the c.o.m. and
relative coordinate sectors, the LLL is spanned by energy
degenerate angular-momentum eigenstates. The c.o.m Hil-
bert space is identical to that of a single-particle; angular
momentum states �n�c are eigenstates of angular momentum

�Â†Â having eigenvalues n�,where n is an integer.13 Here,

the usual commutation rules �Â , Â†�=1 are satisfied and the
components of the guiding centers have the form

X̂= l�Â+ Â†� /2 and Ŷ = il�Â− Â†� /2, where l=	�c /qB is
the single-particle magnetic length. In the relative
coordinate sector, the anyon boundary condition is not re-
spected by the guiding center coordinates, x̂ , ŷ, but it
is by their quadratic combinations, â
�x̂2+ ŷ2� /8l2,

b̂
�x̂2− ŷ2� /8l2, and ĉ
�x̂ŷ+ ŷx̂� /8l2. These operators re-

spect the sp�1,R� algebra �â , b̂�= iĉ, �b̂ , ĉ�=−iâ, and

�ĉ , â�= ib̂.14 The relative coordinate Hilbert space consists of
irreducible representations of this algebra �k ,��r, where k is
an integer, and correspond to eigenstates of the angular mo-

mentum L̂=��2â−1 /2� having eigenvalues �2k+���. These
angular momentum eigenstates satisfy a�k ,	�= �k+���k ,	�
and ��k ,	�=���−1��k ,	� where �
	 /2+1 /4 and
�
a2−b2−c2 is Casimir operator.10,14
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Localized anyons can be composed as linear combina-
tions of the degenerate LLL states. These states can be de-
composed into product states of localized states centered at
the dimensionless c.o.m. coordinates Z= �z1+z2� /2 and rela-
tive coordinates z=z1−z2, where the individual anyons are
centered at z�= �x�+ iy�� / l , �=1,2. These localized states,
which are not equivalent to coherent states except for bosons
and fermions, have been shown to have the form10

�Z�c = e−�Z�2/2�
n=0



�Z��n

	n!
�n�c, �2�

�z�� = N�,z�
k=0



�z�/2�2k+�

	��2k + � + 1�
�k,��r. �3�

Here, we express the normalization N�,z, which in itself con-
tains information on statistics, in terms of a sum of two con-
fluent hypergeometric functions as 2�N�,z�−2��1+��
= ��z� /2�2��M�1,1+� , �z�2 /4�+M�1,1+� ,−�z�2 /4��. The con-
vention chosen for the relative coordinate localized state ex-
plicitly respects the anyonic boundary condition in picking
up the desired phase under the exchange action z→zei�. Our
restriction on the � range 0���1 ensures that the localized
anyon wave function is regular at the origin and that the
focus is purely on statistical interactions.

The localized states in Eq. �3� are consistent with those
for fermions and bosons. There �anti�symmetrization is
achieved by constructing

�z�1/0 = e�z�2/8N1/0,z��z�d � �− z�d� , �4�

where �z�d refers to the localized state for distinguishable
particles, analogous to Eq. �2� but with Z→z /2. For local-
ized states, the probability density must be symmetrically
peaked close to both relative coordinates z and −z for all
indistinguishable particles; this can be ascertained by analyz-
ing the anyon state of Eq. �3�. The construction of Eq. �4�
explicitly shows that the fermion/boson boundary conditions
allow only odd/even angular momentum states in the relative
coordinate localized state decomposition. By evaluating the
overlap between �z�d and �−z�d, one finds that the normaliza-
tion constant has limiting forms �N1,z�−2=sinh��z�2 /4� and
�N0,z�−2=cosh��z�2 /4�, respectively.

One of the most direct measures of quantum statistics and
related �anti�bunching behavior is the average guiding center
separation squared, �r̂2�
�x̂2+ ŷ2�. It is well known that for
any generic system of spinless fermions/bosons, �anti�sym-
metrization leads to this average separation being greater/
smaller than the value for distinguishable particles.15,16 Gen-
erally, this statistical effect becomes most pronounced at
smaller separation while at larger separation, statistical cor-
relations decay in a manner characteristic to the particular
system. Here, to quantify this statistical effect, we define a
bunching parameter

��z�,�� 

1

4l2 ���z�r̂2�z�� − d�z�r̂2�z�d� , �5�

where the factor of 4l2 is a matter of convention. A �positive�
negative value of  implies �anti�bunching in comparison
with distinguishable particles.

We now evaluate the bunching parameter for localized
LLL anyons. For distinguishable particles, we have the ex-
pected form d�z�r̂2�z�d= ��z�2+2�l2, where the nonzero
minimum value reflects the finite width associated with the
minimum uncertainty in guiding center positions x and y
characteristic of states in the LLL. For fermions and
bosons, �r̂2� can be directly evaluated using the definition in
Eq. �4�. The bunching parameter takes the forms
�z ,1�= ��z�2 /4��coth��z�2 /4�−1� for fermions and
�z ,0�= ��z�2 /4��tanh��z�2 /4�−1� for bosons. In keeping with
expectations, the bunching parameter is always positive/
negative for fermions/bosons and decays exponentially to-
ward zero for large �z�.

For anyons, the desired expectation values can be
evaluated by using r̂2=8l2â, and the eigenstate property
â�k ,��r= �k+� /2+1 /4��k ,��r, and hence

��z�8â − 2�z�� = �N�,z�2�
k=0
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Figure 1 shows the trend exhibited by the bunching param-
eter obtained from Eq. �6�. Quite remarkably, the value of 
at �z�2=0 �which is not physically accessible in quantum Hall
samples� directly reflects the statistical parameter;
�0,��=�. For the limiting case of the fermion, as a func-
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FIG. 1. �Color online�The bunching parameter as a function of
the dimensionless distance between particles �z� for different values
of anyonic phase �. Curves from the topmost along the y axis
correspond to values �=1, �=3 /5, �=1 /3, and �=0. Inset: the
value z0 as a function of �, where ��z0� ,��=0 determines the
crossover between antibunching and bunching behavior.
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tion of �z�, ��z� ,1� begins at a value of unity and then decays
to zero in a monotonic fashion. For the bosonic case, ��z� ,0�
always remains negative, beginning at zero decreasing to a
minimum value and then rising to taper toward zero. The
intermediate anyonic values of � interpolate between these
two limiting behaviors. For all anyons, ��z� ,�� begins at �,
decreases below zero, reaches a minimum and finally tapers
toward the zero. Hence, the bunching parameter shows that
all anyons exhibit antibunching at short length scales and
bunching at long scales and that the trend evolves continu-
ously as a function of �. This result is surprising in that one
might expect ��1 /2 to be bosonlike and ��1 /2 to be fer-
mionlike. The behavior of ��z� ,�� shown in Fig. 1 and its
connection to fractional statistics forms the heart of our re-
sults.

While the correlations discussed above bear distinct sig-
natures of statistics, they are static in nature due to the pro-
jection to the LLL. In practice, probing these correlations
requires endowing them with dynamics via the application of
appropriate potentials that lift the LLL degeneracy. Here we
propose the application of a saddle potential whose effect on

each particle can be described by Ĥs=��=1,2Ux̂�ŷ�, U�0,
where Ul2 is much smaller than the Landau-level spacing
thus retaining the LLL projection. In terms of LLL eigenstate
solutions for a single particle,17 it has been shown that the
saddle potential acts as a beam splitter in that particles ap-
proaching the origin along the x axis tend to scatter either
along the positive or the negative y axis. Moreover, for two
particles, the potential has the advantage of being separable
in terms of the relative and center-of-mass motion,18 hence
preserving the decoupling of these degrees of freedom, and
of respecting the anyon boundary conditions. The saddle po-
tential, when projected to the LLL,10,13 can be expressed as

Ĥs
P =

1

2
iUl2�Â2 − �Â†�2� + 2Ul2ĉ . �7�

As for the single-particle case, eigenstates of this Hamil-
tonian correspond to scattering states in the relative and
center-of-mass sectors, and that anyonic statistics translates
to scattering phase shifts in the relative sector.18 Here we
show that for pairs of localized particles traveling along op-
posite limbs of the saddle on the x axis, the choice of propa-
gation along the y axis directly reflects the correlations simi-
lar to those shown in Fig. 1.

To gain an insight on the propagation of localized
states along saddle potentials, we present an analysis of
single-particle physics exploiting analogies in quantum
optics19 which can also be applied for the c.o.m.
behavior. The associated localized c.o.m. state in Eq. �3� has

the coherent-state form �Z�c=exp�ZÂ†−Z�Â��0�c
 D̂�Z��0�c.
In the Schrödinger picture, we can consider the time
evolution of the coherent state due to the saddle potential:

�Z�t��c=e−iĤs
Pt/��Z�c. In the language of quantum optics, the

time-evolution operator has the form of the squeeze operator

Ŝ���=exp���Â†�2 /2−��Â2 /2�, where for the c.o.m. sector we
have �=−Utl2 /�. The squeeze parameter �
rei� corre-
sponds to squeezing along the direction � with associated
aspect ratio r; here the squeeze is of magnitude Utl2 /�

along the x axis. We can now invoke the identity

Ŝ���D̂�Z�= D̂�Z cosh r+Z�ei� sinh r�Ŝ��� and the fact that

D̂���Ŝ����0� represents a squeezed state having squeeze pa-
rameter � centered at �.19 Hence, the time-evolved coherent
state flattens along the y axis and its center follows the tra-
jectory �Xe−Utl2/� ,YeUtl2/��, where �X ,Y� is the initial position
of the coherent state. Consistent with semiclassical dynamics
along equipotentials of a saddle potential, the center obeys
X�t�Y�t� being a constant. Furthermore, any state having the
initial condition Y�t=0��0 evolves asymptotically toward
Y�t→
�→+
 and likewise for the lower quadrant.

For the relative motion of anyons the analysis presented
above cannot be directly applied as the associated sp�1,R�
algebra is rather involved. However, we surmise a few com-
mon features and explicitly derive time-evolved expectation
values of relevant observables. Given that the initial-state
probability density for the relative coordinate is peaked at z
and −z, over time, we expect it to asymptotically be distrib-
uted in the upper and lower quadrants in a manner which
depends on the statistics of the particles. The functioning of
the saddle potential as a beam splitter is best seen when two
localized state anyons are placed along or close to the x axis,
diametrically across one another with respect to the saddle-
point origin. As a function of time, the particles approach
one another and then get deflected along the y axis. Whether
or not they travel in the same direction �along either the
positive or negative y direction� or in opposite directions

depends on the magnitude of �Ŷ2� compared to that of �ŷ2�.
In fact, the quantity analogous to those measured in photonic

and electronic beam splitters is �ŷ1ŷ2�= �Ŷ2− ŷ2 /4�; a
positive/negative value of �ŷ1ŷ2� indicates that the anyons
traveled out along the same/opposite limbs, thus exhibiting
bunching/antibunching behavior. These correlations are
analogous to those between reflected and transmitted cur-
rents in electronic beam splitters.4,5

The desired time-evolved expectation values are most
easily evaluated in the Heisenberg representation. From the

commutation relations of â, b̂, and ĉ,14 one finds the Heisen-

berg equations of motion dâ /dt=−2Ul2b̂, db̂ /dt=−2Ul2â.
The solutions of these equations yield x̂2�t�=e−2Utl2/�x̂2�0�
and ŷ2�t�=e2Utl2/�ŷ2�0� for the relative coordinates. Similarly,
and consistent with the above discussion, one finds

X̂2�t�=e−2Utl2/�X̂2�0� and Ŷ2�t�=e2Utl2/�Ŷ2�0� for the c.o.m.
coordinates. Evaluating the expectation values of these op-
erators for the initial state described by Z and z, we find that
the correlator for the relative position along the y axis is

�ŷ1ŷ2� = l2e2Utl2/�Im�Z�2 −
1

4
Im�z�2 −

1

2
 + �� , �8�

where ��z� ,�� is the bunching parameter introduced in Eq.
�5�. The function ��z ,�� is a small correction, which has the
maximum magnitude of 0.018, vanishes for z=0 and arises
due to the deviation of localized states from coherent states.
Hence, for anyons placed on the x axis, the sign of �ŷ1ŷ2�, or
equivalently, whether the particles went into the same or op-
posite limbs, is determined by the statistics and the bunching
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parameter for the initial conditions. Given the exponential
dependence of �ŷ1ŷ2� on time, the saddle potential acts as a
beam splitter whose read out amplifies initial correlations. As
discussed above and shown in Fig. 1, for bosons/fermions, 
is always negative/positive, recovering the well-known result
that statistically correlated bosons/fermions travel along the
same/different limbs. For anyons, the sign of the bunching
parameter directly determines whether pairs of particles go
into the same limb or opposite limbs. Thus, for particles
initially placed close together, particles propagate into oppo-
site limbs as do fermions while those placed further out
propagate into the same limbs; the transition point between
these two dramatically different possibilities depends on the
fractional statistics parameter. A clear-cut signature of
anyons is that, unlike for fermions and bosons, both possi-
bilities are present and accessible by tuning initial condi-
tions.

Experimentally, for a direct implementation one can en-
visage initializing two quasiparticles in the quantum Hall
bulk in two locally created potential minima, as has been
observed for single quasiparticles,20 applying a saddle poten-
tial and collecting quasiparticles along receiver limbs by way
of other local potential traps. Such local state preparation
would allow a direct mapping of the bunching parameter .
However, this requires some further advances in the experi-
mental control of the quantum Hall bulk.

Alternatively, partial information on  can be obtained
with existing experimental technology by exploiting the
beautiful geometries and methods that use quantum Hall
edge states as sources of quasiparticles and that have already
shown beam-splitter physics and the fermionic statistics of
electrons.4,21 A specific experiment faithful to previously dis-
cussed settings4,22 involves two edge states meeting at a

quantum-point contact �QPC�, which is locally a saddle po-
tential. Quasiparticles impinging on the QPC scatter into the
outgoing channels in a manner that depends on their mutual
statistics. Here we take a simplified model of heavily diluted
beams, such that any interactions in the QPC are pairwise.
For a QPC tuned to 50% transmission, the quasiparticles are
incident with Im�Z�=Im z=0 in Eq. �8�, so exit in the same
��ŷ1ŷ2��0, bunching� or different ��ŷ1ŷ2��0, antibunching�
channels depends on the sign of �x�−2�. Here x is the ini-
tial separation of the incoming particles determined by the
spatial extent of the QPC and the average separation between
quasiparticles in each beam. The separation x could thus be
changed by small variations in magnetic field as well as de-
gree of dilution of the beams. A measure of  as a function of
x could then be obtained from current-correlation measure-
ments between the outgoing particles. While a numerical
analysis of this effect is clearly desirable �to allow a mea-
surement of ��, this requires the development of a detailed
model for the diluted beams and the QPC which is beyond
the scope of the present work.

In conclusion, we have presented fundamental correla-
tions characterizing LLL anyons and distinguishing them
from their fermionic and bosonic counterparts. We have pro-
posed the application of a saddle potential as a means of
realizing a quantum Hall beam splitter that can display these
correlations and associated direct signatures of fractional sta-
tistics.
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